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The Slender rockets and missiles are always idealized as free-free beams under a thrust force to 

investigate the dynamic stability characteristics and the natural frequencies and mode shapes of 

transverse vibration, those works are usually carried out based on Euler-Bernoulli beam theory. 

This paper focuses on such projects with low slenderness and establishes the dynamic model of 

the free-free beam subjected to the effect of thrust on tail based on Timoshenko beam theory and 

the extended Hamilton’s principle. The dimensionless forms of dynamic governing equations 

with improved boundary conditions are analyzed with the differential quadrature method (DQM). 

Meanwhile, the corresponding model of Raleigh beam, shear beam and Euler-Bernoulli beam are 

established according to the degeneration of original equations. Based on the investigation to the 

effect of different boundary conditions and different beam models on the critical thrust force of 

instability state, the variations of dynamic stability and the vibration characteristics of the beam 

model with the thrust force are obtained. The work is expected to contribute important reference 

for the analyzing of dynamic stability and the design of control system of aircrafts with high 

elasticity and low mass. 

 

1. Introduction 

Missiles and rockets are always with high thrust-to-weight ratio and slender shapes, the signifi-

cant flexibility leads to dynamic instability appears as a result of the interaction of fluid and struc-

ture subjected to end thrust as follower force. Investigations to the dynamic stability of slender 

flight vehicles can provide important reference for the structure design and navigation control. 

It is generally believed that considering the effect of end thrust for slender missiles and rockets 

is a typical non-conservative issues 
[1]

.Such aircrafts obtained thrust from the jet engine, within the 

control system, the velocity of gas from jet is so high that the direction of thrust follows the vertical 

direction to the transverse vibration deformation of beam, meanwhile, the variation of cross section 

area at head of aircraft causes drag force. The effects of thrust at tail and drag at head lead to axial 

compressive load for the aircraft. For the slender aircrafts idealized as free-free beam model, Beal 
[2]

 

investigate the stability of a flexible missile idealized as a uniform free beam under an end thrust at 

the first time, and incorporated a simplified control system to obtain the directional stability. They 

found that critical thrust magnitude is associated with coalescence of the two lowest bending fre-

quencies, instabilities are most likely to occur when the frequency of the thrust variation is twice 

any of the bending frequencies. Wu 
[3]

 used the finite-element technique to study the stability be-

havior of a flexible free-free beam with concentrated mass under a constant thrust and subjected to a 
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directional control device.  Numerical results of their research show the nonzero rigid motion mode, 

lack of control to this mode would lead to divergent. Pourtakdoust and Assadian 
[4]

 combined the 

rigid motion equations and governing equations of non-uniform beam subject to axial compressive 

load, and investigated the effect of thrust on dynamic stability and rigid motion of flexible guided 

missile. Xu et al. 
[5]

 simplified missile subjected to end thrust as non-uniform beam model under 

follower load to investigate aeroelastic dynamic stability of slender missiles.  

All the above model are based on the Euler-Bernoulli beam theory. Ignoring the effect of shear 

deformation and moment of inertia of cross section leads to reduce the accuracy of the results of 

these models. Peter et al. 
[6]

 studied the dynamic stability of a cantilevered  beam lying on an elastic 

foundation  and subjected to a follower load based on Timoshenko beam theory.  By Analyzing 

influence of load factor, concentrated mass and elastic foundation on natural frequencies of beam, it 

was shown that tangential follower load cause flutter while the Timoshenko beam reaches unstable 

point, and the amplitude becomes large which cause serious aerodynamic flutter for aircraft, and 

should be avoided in the structure design. Amir et al. 
[7]

 also established multi-stepped beam models 

with concentrated mass subjected to a follower force based on Timoshenko beam theory, and intro-

duced a parametric concept for analyzing a multi-step aerospace structure. Finite element method 

has been used to study the dynamic and static instability characteristics, which is limited in of for-

mation of stiffness matrix and numerical development of code. Such analysis is always simplified 

as eigenvalue solving problems, it is needed to decouple the governing equations while using finite 

element equation, and the assumption modes shape functions are always hard to satisfy the bounda-

ry conditions while using Garlerkin method, compared to these two methods, differential quadrature 

method (DQM) has littler limitation and is suitable for solving problem of this kind. 

The transverse vibration model of free-free beam subjected to thrust force is established with in 

the Timoshenko beam theory according to extended Hamilton’s principle. The dimensionless forms 

of dynamic governing equations are obtained with improved boundary conditions. Numerical solu-

tion of the dimensionless natural frequencies is studied by using DQM, The aims are to compare the 

effect of different beam models and boundary conditions on the critical thrust of dynamic instability, 

and the influence on the dynamic characteristics of the beam models. 

2. Governing equations and boundary conditions  

 
Figure 1. The model of free-free beam subjected to end thrust 

 

Considering an uniform Timoshenko free-free beams subject to end thrust P, and with the trans-

verse displacement W(X,T). EI is the stiffness and Im(x) is the moment of inertia of the beam cross 

section. The shear stiffness is GA ,   is the shear ratio of cross section while A  is the area of the 

beam cross section and G is the shear modulus. The length of beam is L and the linear density is A , 

the model of beam is shown in Fig. 1. 

The kinetic and potential energies of beam can be expressed as follows: 
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where  ,X T
  denotes the rotary angle of beam cross section. For Timoshenko beams, 

W X    , where   is the shear angle. 

The potential energies caused by external conservative force N  is zero, 0NU  .The external 

conservative work done by axial force  X
N  is described as follows: 
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According to extended Hamilton’s principle for the non-conservative system, it can be expressed 

as: 
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For uniform beams, the moment of inertia  m x
I I . Without considering the coupling of longi-

tudinal and transverse vibrations, the governing equations of transverse vibration can be expressed 

as: 
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For slender aircrafts idealized as beam models, the axial force at X position  X
N , and the deriva-

tive of axial load XN  are described as: 
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Substituting Eq. (6) into Eq. (5), the governing equations can be obtained as follows:
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              (7) 

Define tk  as the directional control factor, shown in Fig.1. The boundary condition of free-free 

beam is shear force Q and bending moment M at head and tail is all zero, can be expressed 

as    
0, 0; 0,

X X
M Q X L   , one may deduce the following boundary conditions: 

0; =0; 0
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The following dimensionless parameters can be introduced to simplify the governing equations: 
2
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where the dimensionless parameters 1k  represent the effect of rotary inertia, 2k  account for the ef-

fect of shear distortion, 3k  represent stiffness of the beam subjected to axial load N, and also ac-

count for load factor, respectively. 

Eq. (7) can be changed to: 
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                           (10) 

(a) Considering the load directional control, boundary conditions of beam can be expressed: 

3
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                                      (11) 

(b) Without considering the load directional control factor, the thrust is always normal to the di-

rection of transverse vibration deformation, boundary conditions of beam is the special case of Eq. 

(11) while =0tk , obviously. 

Meanwhile, the governing equations of Euler-Bernoulli beam can be obtained by ignoring the 

items associated with the influence of shear deformation and moment of inertia, shown as follows: 

3 + 0tt xx xxxxw k w w                                                       (12) 

While only ignoring the effect of shear deformation, Rayleigh beam model can be obtained: 

3 1 + 0tt xx xxtt xxxxw k w k w w                                              (13) 

While ignoring the effect of moment of inertia only, the governing equation of shear beam mod-

el can be expressed as: 
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3. Numerical Solutions and rule of stability 

3.1 DQM method 

The general solution in the form of separation of variables of Eq. (10) can be expressed as 

          , tw x t x e                                                      (15) 

where   is the mode shape function,   denotes the natural frequency of beam. 

Substituting Eq. (15) into Eq. (10) yields: 
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Boundary conditions of Eq. (12) can be translated to: 
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The nodes are set as 
[8]

: 
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According to DQM:
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where 
 r

ijA  is the rth weighted coefficient, and jf  is the value of function at location jx , n is the 

number of the nodes. 

               1 2 3 4
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The first order weighting coefficients are 
[9]
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The higher order of r
th 
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Substituting Eqs. (19)-(22) into Eq. (16) , the governing equation can be translated to the matrix 

form: 
          3 2 1 04 3 2       
4

B B B B B Φ 0                               (23) 

where , 0,1, 2, 3, 4i i B  are n n  matrix, the mode shape vector   , 1,2...j j n


 Φ .  

The solving of Eq. (23) is transformed to the generalized eigenvalue problem. The eigenvalues 

of Eq. (23) represent the dimensionless natural frequency of beam system. According to the good 

accuracy of astringency of DQM, set node number n=14 for the numerical analysis. 

3.2 Criterion of stability 

According to the introduced dimensionless parameters, the dimensionless natural frequencies of 

beam can be expressed as: 
4

i i EI AL                                                                  (24) 

where i  is the ith dimensionless frequencies, represents the ith extended eigenvalue of Eq. (23). i  

is the  ith original natural frequencies of beam model. 

 The stability of beam system is determined by the real part  Re  and imaginary part  Im   of 

i . When  Re   is negative or zero, the structure is considered stable, if  Im 0i  , it represents 

dynamic instability, while  Im =0i , it represents static instability. When  Re   is nonzero and 

positive, this is the case of instability. When  Im  is zero, divergence instability appears, whereas 

flutter instability is characterized by  Im 0  . When  Re   is positive or zero, while  Im  is 

zero, the solution represents a rigid body motion. 

At least one eigenvalue   modRe 0 1,2,j ej n  ， , the other eigenvlaues 

  modRe 0 1,2, ,i ei n i j   ， , it represents the state of critical stability, thrust P  is the 

critical thrust crP .  

Previously defined dimensionless parameter 
2

3k PL EI  represents the load factor, by introduc-

ing the reference critical thrust 
2 2

0crP L EI , the load factor 
2

3 0crk P P . 
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4. Numerical results and discussion 

Set a typical simplified slender aircraft with rectangular cross-section model as uniform beam, 

L=8m, I=0.0119m
4
, E=100GPa, A=0.181m

2
,
 
Poisson's ratio is 0.3,  =1.986×10

3
, to investigate the 

dynamic stability of beam with the influence of different factors. 

4.1 Stability analysis of different boundary type and different beam model 

Thrust direction control kt=0 means that the directional control of thrust is ignored. The first 

three order dimensionless frequencies of different beam models are compared in Fig. 2. The result 

is similar to Beal
[3]

, Wu
[4]

 and Siamak
[10]

 , it shows that before k3=40, the first three order dimen-

sionless frequencies decrease with the increasing thrust, after that, the first order frequencies turns 

to increase and couples with the second order at k3=80, the thrust reaches the critical value and 

beam is dynamic unstable, the third order frequency remains to decrease.  

 
 

Figure 2. First three dimensionless fre-

quencies of different beam model VS. 

thrust factor, kt=0 

Figure 3. Foundational and first two di-

mensionless frequencies of different beam 

model VS. thrust factor, kt=1 

 

Comparative results of different beam models show that the dimensionless frequencies of Timo-

shenko beam is the lowest than other beam models for every order, those of Euler-Bernoulli beam 

are highest, the difference is higher for high order frequencies than low orders, which meet the dy-

namic characteristics of pinned-pinned beam 
[11]

. The critical thrust factor for Timoshenko beam, 

Euler-Bernoulli beam, Rayleigh beam and shear beam model are 72.3, 80.9, 78.7 and 72.5, respec-

tively. It can be concluded that the effect of shear deformation and moment of inertia both reduce 

the critical thrust, and the influence of moment of inertia plays the main role. 

When directional control factor of thrust kt=1, the dimensionless frequencies of different beam 

models are shown in Fig. 3. The result is different from the case of kt=0. Firstly, unstable rigid 

mode appears while 0  represents its dimensionless frequencies. The frequency of rigid mode does 

not remains zero and increases with the thrust, Secondly, the 1st and 2nd order frequencies of elastic 

bending mode decline. When k3 reaches to 15, the 1st order frequency decreases to zero as well as 

the rigid mode. After that the new coupled elastic mode appears and increases with thrust. The val-

ue of thrust factor at first couple point for Timoshenko beam is 14.8 while it is the 15.2 for Euler-

Bernoulli beam, highest than other beam models. 

It also should be noted that the first order dimensionless frequency of beam for different bound-

ary conditions is always 1.5, which is the same as free-free beam without the effect of thrust and 

axial load. 
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4.2 Relationship between thrust directional control factor and dynamic stability  

  

Figure 4. Foundational and first three 

dimensionless frequencies of different beam 

model VS. thrust factor, kt=0.1 

Figure 5. Variation of dimensionless fre-

quencies with different directional control factor 

of thrust 

 

When the thrust direction control factor kt=0.1, the stability of beam appears to be different 

from the above two cases, as shown in Fig. 4, but it also contains both nonzero rigid modes and the 

coupling of 1
st
 and 2

nd
 elastic bending mode. The dimensionless frequency of the rigid mode varies 

with the increasing thrust. The critical thrust factor k3 declines to near 70 for different beam models.  

From the above results it can be concluded that the thrust directional control factor affects the 

dynamic stability, to investigate the law of their relationship, Euler-Bernoulli beam model is used to 

analyzed the critical thrust factor, in order to avoid the influence of shear deformation and moment 

of inertia effect, the result is shown in Fig. 5.  

 
Figure 6. Variation of unstable point with different directional control factor of thrust  

 

When kt=0.3, the 1
st
 order frequency bifurcates while thrust factor reaches to 59.5, and couples 

with the 2
nd

 frequency at 63.3. When kt is larger, reaches to 0.4 and 0.5, the divergence point de-

clines and coincides with the coupling point, the beam undergoes dynamic instability. 

Further analysis of coupling point varying with the thrust factor is shown in Fig. 6. When thrust 

factor become larger than kt=0, the coupling points firstly decrease and reaches the minimize value 

at kt=0.4~0.5, then it increases and reaches another maximum point of value 73 when kt=1, which is 

lower than kt=0. 

5. Conclusion 
In the present paper, the transverse vibration governing equations of free-free Timoshenko 

beam subjected to end thrust is established according to Timoshenko beam theory, and DQM 

method is used in order to investigate the dynamic stability characteristics of beam numerically, 

results show that: 
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1. The effect of the shear deformation and moment of inertia both declines the critical thrust factor 

of beam model, and moment of inertia plays the main role. 

2. As the increasing of thrust, the 1
st
 and 2

nd
 elastic bending modes couple when the directional 

control factor of thrust is low, the beam undergoes dynamic instability. The rigid modes appears 

as when the directional control factor of thrust is near to 1, while elastic modes bifurcates and 

couple . 

3. The directional control factor of thrust has great influence on the critical thrust, the wrong 

directional control of thrust may lead to reduce the critical thrust of the aircraft. 
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