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Non-uniform mass distribution on the beam section will lead to the coupling between lateral 
and axial vibration of a beam. Based on Hamilton’s principle and spectral element method 
(SEM), a double-layer Timoshenko beam model is developed to derive the coupled govern-
ing equation. The coupling vibration characteristics are investigated. To simulate the mass 
eccentricity, the densities and thicknesses of the two layers are different. One layer is quite 
thinner than the other, but its density is larger. So that the influence of stiffness of the thinner 
layer on the thicker one’s is negligible. A corresponding finite element modal is established 
to verify the SEM model. The mechanism how the coupling is yielded is revealed. The ef-
fects of mass non-uniformity on free vibration and forced vibration of the beam with classi-
cal and flexible boundary conditions are analyzed. A control method is presented to reduce 
the vibration subject to longitudinal forces. 

  

1. Introduction 
Many researchers concentrate on non-uniform beams with various cross sections, discrete dy-

namic components and flexible supporting boundary conditions [1-2]. However, very few of them 
take the mass eccentric into consideration. Yao Xiongliang [3] investigated a method to suppress 
bending vibration and noise radiation by applying eccentric mass vibration isolation using wave 
theory. Yang Zhirong [4] studied the longitudinal and transversal nonlinear coupling vibration of 
ship shafting with axial force on flexible boundary condition. 

Laminated composite beams with asymmetrically distributed will lead to the coupling between 
bending and axial motion [5]. The analysis of laminated beams is based on Symmetry. Thus, the 
coupling effects are neglected and the transversal motion equations are derived independently [6,7].  
Khalili SMR [8] resolved the free vibration of sandwich beams with dynamic stiffness method. On-
ly shear deformation of the core is considered. Lee U [9] and Kerboua M [10] developed a two-
layer Euler-Bernoulli beam with a thin layer of piezoelectric materials and smart materials respec-
tively. Coupled equations and active control methods are presented to decrease the transverse re-
sponse. QH Nguyen [11] and S Lenci [12] build a two-layer beam model considering the interlayer 
slip. Natural frequencies and mode shapes are computed. The influences of adhesion stiffness on 
natural frequencies and mode shapes are revealed. High order shear theory is utilized by Y Frostig 
[13] to examine a two-layer composite beam with partial interaction. The dynamic responses under 
seismic excitation are presented. Accuracy of results is improved. 

This paper focuses on beams with mass eccentric. The coupled equations of motion are yielded 
based on a two-layer asymmetry Timoshenko beam. Free vibration and forced vibration characteris-
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tics are presented using the spectral element method (SEM) [14], which has high frequency accura-
cy by employing dynamic shape functions. The natural frequencies and mode shapes are computed 
both in classical and flexible boundary conditions. The influences of mass eccentric distance on 
coupling properties are investigated. A control method of eccentric loading to reduce the influence 
of transverse resonance peaks on axial excitation is presented. 

2. Derivation of coupled governing equations  
As Fig.1, the total length of the two-layer Timoshenko beam is L . jE , jρ , jh , jA , ju are Yang’s 

modulus, density, height, area and axial displacement of beam ,( )j j = 1or2  respectively. The deri-
vation of the governing equations is based on assumptions as follow: 

1，The displacement in the interface is continuous. There is no slip between the two layers. 
2，The transverse displacement ( , )v x t  of both layers is the same and ( , )v x t   is small enough. 
3，The neutral layer of the system remains the same with the neutral layer of beam 1, namely

2 1h h<< . The external force is applied on the neutral axis of beam 1. 
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Beam 2 （E2,ρ2）
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Figure 1.Two-layer Timoshenko beam model. 

With the assumptions, the axial displacements of beam 1 and beam 2 subject to: 
  2 1 / 2=u u hθ−                                                        (1) 

where θ is the rotational displacement, 1 2h h h= + is the total height of the model. 
The axial-transverse coupled dynamic equations of the two-layer beam system are derived with 

Hamilton’s principle. Then, the strain energy of the system can be expressed by 
2 2 2 2 2 2

1 1 1 2 2 2 1 1 2 2 1 1 2 2
0

1= [ ' ' ' ' + ( ) ( ) ]
2

L

V E Au E A u E I E I G A v G A v dxθ θ κ θ κ θ′ ′+ + + − + −∫                     (2) 

in which, 1I  and 2I stand for the area moments of inertia of the beams. κ  is the shear factor. 1G and
2G  denote shear modulus of the beams. 

The kinetic energy of the system can be written as follows: 
2 2 2 2 2

1 1 2 2 1 1 2 2 1 1 2 2
0

1 2
1= [ ( ) ]
2

L

T Au A u A A v I I dxρ ρ ρ ρ ρ θ ρ θ+ + + + +∫  

  

                                 (3) 

The virtual work due to external forces as shown in Fig.2 is given by: 
0 1 1 0 0(t) (0, t) (t) ( , t) (t) (0, t) (t) (L, t) (t) (0, t) (t) (L, t)L L LW N u N u L M M Q v Q vδ δ δ δθ δθ δ δ= − + − + − +     (4) 

where N , M ,Q are the axial force, bending moment, and transverse shear force respectively.
uδ ,δθ , vδ  are the virtual displacements separately in axial, rotational and transverse direction.  
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Figure 2.External forces on the ends of the beam. 

Based on the Hamilton’s principle, the variational equation can be derived as  
2

1

( ) 0
t

t

T V W dtδ δ δ− + =∫                                                          (5) 
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Then the governing partial equations are established in the following form: 

  
1 1

1 1

0

( ) 0
( ) 0

EAu Au

EI I u u GA v
GA v Av

ρ αθ βθ

θ ρ θ α β κ θ
κ θ ρ

′′ ′′− + − =

′′ ′′ ′− + − + − =
′′ ′− − =











                                     (6) 

Meanwhile, the boundary conditions are yielded as: 
1 1 ( )N EAu M EI u Q GA vβθ θ β κ θ′ ′ ′ ′ ′= − = − = −， ，                                    (7) 

where the corresponding coefficients can be calculated as: 
2 2

1 1 2 2 1 1 2 2 2 2 1 1 2 2 2 2

1 1 2 2 1 1 1 2 2 2 2 2 2 2

; / 4; / 4;
; ; / 2; / 2;

A A A I I I A h EI E I E I E A h
EA E A E A GA G A G A A h E A h
ρ ρ ρ ρ ρ ρ ρ

κ κ κ α ρ β
= + = + + = + +
= + = + = =

 

The governing equations are coupled with coefficients α and β  in Eq.(6).  α  is related to the 
mass non-uniformity, and β  is owed to stiffness non-uniformity. 

3. Solution of the coupled equations with spectral element method 
The equations can be solved by the method of separation variables. Supposing the harmonic 

variation for axial, lateral and rotational displacement 1u , v ,θ are: 

1 (x, )ei tu U ωω= ， (x, )ei tv V ωω= ， (x, )ei tωθ ω= Θ                                        (8) 
where U ,V , Θ  are the dynamic shape functions, and ω  is the natural frequency of the beam.  
Substituting Eqs.(8) to Eqs.(6) yields: 

2 2

2 2

2

0
( ) 0

( ) 0

EAU A U
EI I U U GA V

GA V A V

ρ ω αω β

ρ ω αω β κ

κ ρ ω

′′ ′′+ − Θ − Θ =

′′ ′′ ′Θ + Θ − − + − Θ =

′′ ′− Θ + =

                                     (9) 

Assume the solutions are in the form of wave number λ : 
x

1 2e , e , ei i x i xV C U rC r Cλ λ λ− − −= = Θ =                                                          (10) 
By substituting Eqs.(10) to Eqs.(9),the equations become:  

2 2 2 2

2 2 2 2

1

2 2

2

0 1 0

0

0 0

A EA

i I EI r

A i r

ρ ω λ βλ αω

ηλ βλ αω ρ ω λ η

ρ ω ηλ ηλ

− −

− − − − =

−

     
     
     
        

                           (11) 

where GAη κ= .Since the displacements can’t be all zero, the determinant of the coefficient matrix 
of the homogeneous equation is zero. Then λ  can be computed from:  

6 4 2
2 3 4 0λ α λ α λ α+ + + =                                                    (12) 

where 
2 2 2

0 2 0

2 2 2 2 2 2 2
3 0

4 2 2
4 0

( ) ; [ ( ) 2 ] / ( ) ;

[ ( ) ( )( ) 2 ] / ( );

[( ) ] / ( );

EAEI EA I A EI EA A

EI A A I EA A A

A A I A

α β η α ω ρ η β ρ η ρ αβη α

α ω ρ ω ρ ρ ω η η ηα ω αβρ ω ρ η α

α ρ ω ρ ρ α ω ρ η α

= − = − + + −

= − − − + + + −

= − −

 

Then the corresponding vector 1 2, ( 1......6)(n) (n)r r n = can be calculated as: 
2 2 2 2

2 1 22 2
,(n) (n) (n)n n

n n

A
r i r r

A EA

ρ ω ηλ βλ αω

ηλ ρ ω λ

− −
= = −

−
                                                     (13) 

The dynamic displacement shape functions are composed by coefficient nC  which is related to 
boundary conditions. The general solutions to Eqs.(10)are given by:   

6 6 6

1 1 1

( ) ( )
1 2x = (x) (x); ;n n ni x i x i x

n n n
n n n

n nU r e V C e r C eC λ λ λ− − −

= = =

= Θ =∑ ∑ ∑（ ）                                      (14) 
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At the both end of the beam, the displacement can expressed by setting 0x = and x L=  in 
Eqs.(14). The displacements are expressed by: 

0 0 00, (0) , (0) , (0)
, ( ) , ( ) , ( )L L L

x U U V V
x L U L U V L V L

= = = Θ = Θ
= = = Θ = Θ

                                       (15) 

which can be written in matrix form: 
0

0

0

1 2 3 4 5 6

1 2 3 4 5 6

1 2 3 4 5 6

(1) (2) (3) (4) (5) (6)
1 1 1 1 1 1

(1) (2) (3) (4) (5) (6)
2 2 2 2 2 2
(1) (2) (3) (4) (5) (6)

1 1 1 1 1 1

(1) (2) (3) (4) (5) (6)
2 2 2 2 2 2

1 1 1 1 1 1

L

L

L

U r r r r r r

V

r r r r r r

U r d r d r d r d r d r d

V d d d d d d

r d r d r d r d r d r d

Θ
=

Θ

 
 
 
 
 
 

 
 
  

[ ][ ]

1

2

3
1

4

5

6

T

C

C

C
T C

C

C

C

=

  
  
  
  
  
  

   
   

 

                   (16) 

where ( 1......6)ni L
nd e nλ−= = . At the both ends of the beam, the forces as shown in Fig.2 can be ex-

pressed by setting 0x = and x L= in Eqs.(7). 
0 0 00, (0) , (0) , (0)

, ( ) , ( ) , ( )L L L

x N N Q Q M M

x L N L N Q L Q M L M

= = − = − = −

= = = =
                                      (17) 

which can be represented in matrix form: 
[ ] [ ] [ ][ ]0 0 0 2 2 3 4 5 6 2

T T T
L L L 1N Q M N Q M T C C C C C C T C− − − = =  ， ， ， ， ， ， ， ， ， ，                   (18) 

where the elements of matrix 2T  are as below ( 1,2.......6)n = : 
( ) ( ) ( )

2 1 2 2 2 2 2 1

( ) ( ) ( )
2 1 2 2 2 2 2 1

(1, ( ) (2, ; (3, ( )

(4, ( ) ; (5, (6, ( )

(n) n n n (n)
n n n

(n) n n n (n)
n n n n n n

T n i EAr r T n i r T n i EIr r

T n i EAr r d T n i r d T n i EIr r d

λ β η λ λ β

λ β η λ λ β

     − − −     
     − − − − −     

）= ； ）= ( ) ）= ；

）=− ）= ( ) ； ）= ；
 

Thus, the relation between forces and displacements is derived by eliminating [ ]TC  from Eqs. 
(16),(18), which is yielded as: 

[ ] [ ][ ]F ST Uω= （ ）                                                       (19) 

where [ ] [ ]0 0 0

T

L L LF N Q M N Q M= − − −， ， ， ， ， , [ ] [ ]0 0 0

T

L L LU U V U V= Θ Θ， ， ， ， ， and the frequency-

dependent spectral element matrix[ ] [ ][ ] 1
( ) = 2 1ST T Tω

−  .  
On classical boundary conditions, the natural frequencies are determined by  

det( )=0gST ω（ ） .                                                          (20) 
When gω  is obtained, the wavenumber λ , coefficient [ ]TC  and vector 1 2, ( 1,2,...,6)(n) (n)r r n =  

are specified and the mode shapes can be obtained from Eqs.(14). 
As for flexible boundary conditions, the spectral element matrix is modified as
( )= ( )- ( )kST ST fω ω ω′ , where the equivalent boundary forces { }

1 0 3 0 5 0 2 4 6L L Lk k k V k k U k V kf diag U Θ Θ= ， ， ， ， ， . 
Now, the natural frequencies and mode shapes can be decided in the same way. The forced re-
sponses can be obtained from Eq.(19)when external forces are prescribed.   

4. Optimal control method 
As Fig.3 shows, the mass center of the system does not coincide with the neutral axis due to ge-

ometric asymmetry and ξ  is the mass eccentric distance. On this occasion, the loading position is 
typically coincidental with the geometrical center, which will result in significant coupling respons-
es in both axial and transverse directions based on Eqs.(6). An optimal control method of eccentric 
loading is raised to decrease the coupled responses under axial excitation. The loading position is 
adjusted to a certain distance e from stiffness center in height direction. The eccentric distance e is 
the optimized parameter and the objective function is the displacement response of the beam under 
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axial eccentric excitations. 

刚度中心

Stiffness center

Mass center

Beam 2

Beam 1

Ft

Fe

e eFtξ 

  
Figure 3.Eccentric loading. 

When the harmonic excitation force eF is not located in the stiffness center, it can be equivalent 
to a harmonic force tF  and harmonic moment teF  applied to the stiffness center. So the objective 
function can be written as: 

[ ] [ ] [ ]( , ) min -1U x ST( ) Fω ω=                                                      (21) 

where [ ]U is the displacement response vector and [ ] T
t tF (F ,0,eF ,0,0,0)=  is the eccentric load vector. 

[ ]-1ST( )ω  is the inverse matrix of spectral element matrix ( )ST ω . This paper is focused on reducing 
transversal resonance contributions in both axial and transverse responses. Thus, the transverse dis-
placement object function is: 

1 1
0 (2,1) (2,3)( , ) minV x ST e STω − −= +                                                    (22) 

where 1
( , )l jST − represents the thl row, the thj column element of the inverse matrix of spectral ele-

ment matrix. According to Eq.(22), when the minimum displacement occurs, the optimized eccen-
tric distance is: 

1 1
(2,1) (2,3)/e ST ST− −= −                                                                (23) 

5. Numerical results and discussion 

5.1 Model validation 
In order to demonstrate the correctness and accuracy of the analysis method proposed above, a 

two-layer beam with rectangular cross section is analyzed in different boundary conditions. Mean-
while, a corresponding three dimensional FEM model is established and the characteristics of the 
system are compared to those of FEM model. The three dimensional model with the same parame-
ters in Table.1 is displayed in Fig.4. The natural frequencies and relative errors in free-free, fix-fix 
and free-fix boundary conditions are presented in Table.2. Additionally, in Table.2, mode 6th is the 
1st axial mode, while others are bending modes. The maximum relative error of natural frequencies 
is no more than 3% which is acceptable in engineering practice. 

Table 1.Calculation parameters of the two-layer beam. 
Parameter E/(N/m-2) κ  / ( )h m  3/ ( )Kg mρ −



 / ( )L m  / ( )b m  

Beam1 2x109 0.849 0.05 2700 2 0.05 

Beam2 2x109 0.849 0.005 10000 2 0.05 

 
Figure 4.Three dimensional FEM model. 
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Table 2.Natural frequencies in free-free, fix-fix and free-fix boundary condition. 

Modal 

order 

Free-free Fix-fix Free-fix 
Frequency
（Hz） Relative 

error 

Frequency
（Hz） Relative 

error 

Frequency
（Hz） Relative 

error 
SEM FEM SEM FEM SEM FEM 

Mode 1 11.62 11.38 2.1% 11.62 11.36 2.2% 1.75 1.79 2.2% 
Mode 2 31.67 31.19 1.5% 31.67 31.11 1.8% 11.46 11.20 2.3% 
Mode 3 61.59 60.65 1.5% 61.59 60.40 1.9% 31.67 31.16 1.6% 
Mode 4 100.4 99.23 1.2% 100.4 98.69 1.7% 61.43 60.53 1.5% 
Mode 5 147.85 146.34 1.1% 147.85 145.40 1.6% 96.44 98.91 -2.5% 
Mode 6 193.89 199.57 2.8% 193.89 198.64 2.4% 100.11 101.24 -1.1% 
Mode 7 203.08 201.46 0.8% 203.08 199.89 1.5% 147.37 145.88 1.0% 
Mode 8 265.47 263.93 0. 8% 265.47 261.53 1.5% 202.30 200.67 0.8% 

The first four mode shapes of both the method introduced and FEM model are presented in Ta-
ble.3.. The results are consistent with the finite element model. 

Table 3.Mode shapes in free-free boundary condition. 

Modal order 
Mode shape 

SEM FEM 

Mode 1 

  

Mode 2 

  

Mode 3 
  

Mode 4 

  
Above all, both natural frequencies and mode shapes have a good agreement with FEM models, 

which illustrates that using our method to evaluate the dynamic properties of the system is reliable 
and practicable. 

5.2 Analysis of coupled dynamic properties 
5.2.1 Coupled response 

Axial-bending coupled dynamic response is investigated to reveal axial and transverse coupling 
vibration properties. At the end of the beam, an axial unit harmonic force is applied to excite the 
beam. The axial response and transverse response of the beam under the excitation are obtained as 
shown in Fig.5 and Fig.6. Compared to uniform beam, the governing equations shown in Eqs.(6) 
and boundaries presented in Eqs.(7) are coupled with mass coupling coefficients α  and stiffness 
coupling coefficient β . Thus, longitudinal excitations can stimulate bending modes which lead to 
the axial displacement responses locally amplification at a certain frequency domain. Longitudinal 
resonance peaks also can be seen from the lateral response curve.  
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Figure 5.Axial response under axial excitation.         Figure 6.Lateral response under axial excitation. 

5.2.2 The influence of the mass eccentric distance 
Figure.7 shows the natural frequencies stay almost the same with the increasing mass eccentric 

distance ξ  which is related to the density of the beams. The variation of mass eccentric distance 
follows the principle that the total mass of the system stays the same. However, the dynamic re-
sponses change a lot with different eccentric distance. In the system, beam 1 plays a major role in 
natural frequency property that is in accord with assumptions while beam 2 plays a role of transfer-
ring energy which leads to the coupling between axial vibrations and bending vibration. When ξ  
rises, the frequencies which are mainly determined by beam 1 remains the same. Meanwhile the 
mass coupling coefficient α  increases and that strengthens the coupling between axial and trans-
verse vibration. 
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Figure 7.Influence of mass eccentric distance. 

5.3 Investigation on optimization  
Based on Eq.(23)The eccentric distance e is concerned with frequency. Fig.9 shows the opti-

mized eccentric loading distance varies with frequency. The optimization responses can be obtained 
in a certain frequency range. For example, to minimize the transverse response between frequency 
75Hz and 125Hz, the optimized eccentric distance is determined by Eq.(23) and showed in Fig.9 
which is 0.003e = . The optimized responses are presented in Fig.10. After optimization, the con-
tribution of bending modes in lateral response and axial response curves are supressed in the certain 
frequency range. The optimized method is effective and useful. 
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Figure 8.Optimized eccentric loading distance. 

 
ICVE2015, Shanghai (China) 18-20 September 2015 7 



 
The 7th International Congress on Vibration Engineering 

 

0 50 100 150 200 250 300

1E-11
1E-10
1E-9
1E-8
1E-7
1E-6
1E-5
1E-4
1E-3
0.01

Di
sp

lac
em

en
t (m

)

Freqz (Hz)

 e=0
 e=0.003

0 50 100 150 200 250 300
1E-11
1E-10
1E-9
1E-8
1E-7
1E-6
1E-5
1E-4
1E-3
0.01
0.1

90 100 110
1E-10

1E-9

1E-8

1E-7

Di
sp

lac
em

en
t (m

)

Freqz (Hz)

 e=0
 e=0.003

Di
sp

lac
em

en
t (

m)

Freqz (Hz)

 e=0
 e=0.003

 
Figure 9.Transverse and axial response optimized at 75Hz-125Hz, 0.003e = . 

6. Conclusion 
In this paper, a two-layer asymmetry Timoshenko beam model is established to simulate a beam 

with mass eccentric. The axial and bending coupled vibration governing equations and boundary 
conditions are yielded using Hamilton’s principle. Spectral element method is applied to solve the 
equations in different boundary conditions. Natural frequencies, mode shapes and coupled respons-
es are computed from the equations. The results are consistent with the corresponding three dimen-
sional finite element models’. The coupled controlling equations reveal that axial excitation can 
stimulate bending modes, which will lead to the axial and transverse response locally amplification. 
Different mass eccentric models show no significant changes on natural frequencies which indicates 
beam 1 plays major role in natural frequencies, while beam 2 contributes to energy transferring 
leading to the coupling vibration. To minimize coupled transverse response, an optimal control 
method of eccentric loading is raised to decrease the response under axial excitation. The optimal 
eccentric loading distance is presented and the optimized responses are obviously reduced in a cer-
tain frequency range. 
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