Investigation of the effects of cushions and anvils on offshore pile driving noise and soil penetration

Qingpeng Deng

State Key Laboratory of Mechanical System and Vibration
Shanghai Jiao Tong University, China

Group meeting, 22th Dec. 2014
Outlines

- Motivation
- Model 1: force and penetration
- Model 2: sound pressure
- Parameters analysis
- Conclusions
Motivation

Why this work?

\[F_i(t) = \begin{cases}
2\pi R F_0^i \sin \left(\frac{\pi t}{\tau_i} \right) & \text{if } 0 < t < \tau, \quad (i = 1, 2, \ldots, 21) \\
0 & \text{if } t < 0 \text{ or } t > \tau
\end{cases} \]

1. Finite differential model
2. Semi-analytical coupling model
Outlines

- Motivation
- Model 1: force and penetration
- Model 2: sound pressure
- Parameters analysis
- Conclusions
Model 1: force and penetration

Non-linear finite differential model

\[D(i, t) = D(i, t - 1) + V(i, t - 1)\Delta t \] \hspace{1cm} (1) \quad \text{Mass Displacement}

\[C(i, t) = D(i, t) - D(i + 1, t) \] \hspace{1cm} (2) \quad \text{Spring Compression}

\[F(i, t) = C(i, t)K(i) \] \hspace{1cm} (3) \quad \text{Spring force}

\[Z(i, t) = F(i - 1, t) - F(i, t) - R(i, t) \] \hspace{1cm} (4) \quad \text{Net force}

\[V(i, t) = V(i, t - 1) + \frac{Z(i,t)}{M(i)} \Delta t \] \hspace{1cm} (5) \quad \text{Velocity}
Model 1: force and penetration

Model discretization

Internal spring constant:

\[K(i) = \frac{A_i E}{\Delta L_i} \quad (\text{Ram & Cushion & Pile}) \]

Element number:

Ram & Pile: At least 6 per \(\lambda_{f_{\text{max}}} \)
Anvil: only 1 element

Time step:

\[\Delta t \leq \frac{\Delta L}{\sqrt{\frac{E}{\rho}}} \]
Model 1: force and penetration

Stress-strain relation of cushion

Cushion material: wood (oak, Micarta, etc.), polymers, fibers, aluminum

\[F = \frac{K_c}{e^2} C(t) - \left(\frac{1}{e^2} - 1 \right) K_c \overline{C(t)}_{\text{max}} \]

\[\Rightarrow \text{temporary maximum value of } C(t) \]

Cushion force:

No tension on the cushion:

When \(C_{\text{cushion}} \leq 0 \)

\(F_{\text{cushion}} = 0 \)
Model 1: force and penetration

Penetration resistance and soil displacement

Soil quake: Q

Soil damping constant: J_S

$K_S(i) = \frac{R_u(i)}{Q}$

$R(i, t) = [D(i, t) - D_S(i, t)] K_S(i) [1 + J_S(i)V(i, t - 1)]$

$R_u(i) = (\rho_w g h_w + \rho_b g h_i) S_i \tan \phi K_0$

No tension on the pile tip:

When $D_{tip} - D_S \leq 0 \quad R_{tip} = 0$
Model 1: force and penetration

Reinhall2011 and Marshall2015 cases

Reinhall2011

\[L_p = 32 \text{ m}, \quad R_p = 0.762 \text{ m}, \quad h_p = 0.0254 \text{ m} \]
\[M_r = 6200 \text{ kg}, \quad V_r = 7.6 \text{ m/s} \]

Marshall2015

\[L_r = 3.79 \text{ m}, \quad M_a = 2550 \text{ kg} \]

Cushion (oak):

\[E_c = 3.1 \times 10^8 \text{ N/m}^2 \quad e = 0.5 \quad h_c = 30 \text{ cm} \]
Model 1: force and penetration

Impact force and penetration

Cushion (oak): \(E_c = 3.1 \times 10^8 \text{ N/m}^2 \quad e = 0.5 \)

\[P_t = 2.1 \exp(-t/0.004) \text{ MPa} \]

\(h_c = 30 \text{ cm} \)
Outlines

- Motivation
- Model 1: force and penetration
- Model 2: sound pressure
- Parameters analysis
- Conclusions
Model 2: Sound pressure

Previous model

\[p_\alpha(x, r, \theta) = -j \omega \rho_f \sum_{\alpha=0}^{1} \sum_{n=0}^{\infty} \sum_{p=0}^{\infty} D_{\alpha n p} H_n^{(2)}(k_{rp} r) \sin k_x p (x - x_{es}) \cos (n \theta + \alpha \frac{\pi}{2}) \]

Problems: Oversimplified the soil effects
Failed to model the sound propagation on the soil-water interface
Improved model

Equation of the shell:
\[
\int_{t_0}^{t_1} \sum_{i=1}^{l} (\delta T_i - \delta U_i + \delta W_i) \, dt + \int_{t_0}^{t_1} \sum_{i,i+1} \delta \Pi_{\lambda \kappa} \, dt = 0
\]

Pressure equations:
\[
\nabla^2 p_w - \frac{1}{c_w^2} \frac{\partial^2 p_w}{\partial t^2} = 0, \quad x_1 < x < x_2
\]
\[
\nabla^2 p_b - \frac{1}{c_b^2} \frac{\partial^2 p_b}{\partial t^2} = 0, \quad x_2 < x < x_3
\]

Variables separation:
\[
\tilde{p}_w = [A_1 e^{-\alpha_w(x-x_1)} + A_2 e^{\alpha_w(x-x_2)}] \cdot H_0^{(2)}(k_r r)
\]
\[
\alpha_w = \sqrt{k_r^2 - \omega^2 / c_w^2}
\]
\[
\tilde{p}_b = [A_3 e^{-\alpha_b(x-x_2)} + A_4 e^{\alpha_b(x-x_3)}] \cdot H_0^{(2)}(k_r r)
\]
\[
\alpha_b = \sqrt{k_r^2 - \omega^2 / c_b^2}
\]
Model 2: Sound pressure

Sound modes (1)

\[\hat{p}_w = \psi_w H_0^{(2)}(k_r r) = [A_1 e^{-\alpha_w (x-x_1)} + A_2 e^{\alpha_w (x-x_2)}] \cdot H_0^{(2)}(k_r r) \]

\[\hat{p}_b = \psi_b H_0^{(2)}(k_r r) = [A_3 e^{-\alpha_b (x-x_2)} + A_4 e^{\alpha_b (x-x_3)}] \cdot H_0^{(2)}(k_r r) \]

Boundary conditions:

\[\hat{p}_w(x_1, r) = 0 \]

\[\hat{p}_w(x_2, r) = \hat{p}_b(x_2, r) \]

\[\bar{v}_w(x_2, r) = \bar{v}_b(x_2, r) \]

\[\bar{v}_b(x_3, r) = 0 \]

\[D A = \begin{bmatrix} 1 & e^{\alpha_w (x_1-x_2)} & 0 & 0 \\ e^{-\alpha_w (x_2-x_1)} & 1 & -1 & -e^{\alpha_b (x_2-x_3)} \\ -\rho_b \alpha_w e^{-\alpha_w (x_2-x_1)} & \rho_b \alpha_w & \alpha_b & -\alpha_b e^{\alpha_b (x_2-x_3)} \\ 0 & \rho_w & -\alpha_b e^{-\alpha_b (x_3-x_2)} & \alpha_b \end{bmatrix} \begin{bmatrix} A_1 \\ A_2 \\ A_3 \\ A_4 \end{bmatrix} = 0 \]

Mode normalization:

\[\delta_{pq} = \int_{x_1}^{x_2} \frac{\psi_w^p \psi_w^q}{\rho_w} dx + \int_{x_2}^{x_3} \frac{\psi_b^p \psi_b^q}{\rho_b} dx \]
Model 2: Sound pressure

Sound modes (2)

\[x_1 = 5.4 \text{ m}, \quad x_2 = 18 \text{ m}, \quad x_3 = 58 \text{ m} \]

\[\rho_w = 1000 \text{ kg/m}^3, \quad c_w = 1485 \text{ m/s} \]

\[\rho_w = 1700 \text{ kg/m}^3, \quad c_w = 1625 \text{ m/s} \]
Model 2: Sound pressure

Sound pressure

(1) \[j\omega \cdot \sum_{i=K-l-J+1}^{K-J} w_i(x, \omega) \ast \left[H(x - x_i) - H(x - x_{i+1}) \right] = -\frac{1}{j\omega \rho_w} \sum_{p=1}^{\infty} D_p \psi^p_w \cdot H^{(2)}_0(k_{rp}R) \quad (x_1 \leq x < x_2) \]

(2) \[j\omega \cdot \sum_{i=K-J+1}^{K} w_i(x, \omega) \ast \left[H(x - x_i) - H(x - x_{i+1}) \right] = -\frac{1}{j\omega \rho_b} \sum_{p=1}^{\infty} D_p \psi^p_b \cdot H^{(2)}_0(k_{rp}R) \quad (x_2 \leq x \leq x_L) \]

Mode orthogonality: \[\delta_{pq} = \int_{x_1}^{x_2} \frac{\psi^q_w}{\rho_w} \frac{\psi^q_w}{dx} + \int_{x_2}^{x_3} \frac{\psi^q_b}{\rho_b} \frac{\psi^q_b}{dx} \]

\[\int_{x_1}^{x_3} [\psi^q_w \ast (1) + \psi^q_b \ast (2)] dx \implies D_q = f(a_{im}) \]

\[\tilde{p} = \sum_{i=K-l-J+1}^{K} \sum_{m=1}^{M} a_{im} \sum_{p=1}^{\infty} \{P_{imp}(x, r) \}
\]

\[P_{imp}(x, r) = \omega^2 \psi_p(x) \cdot \frac{H^{(2)}_0(k_{rp}r)}{H^{(2)}_0(k_{rp}R)} \int_{x_i}^{x_{i+1}} T_m(x - x_i) \psi_p dx \]

\[\psi_p(x) = \begin{cases} \psi_{wp}(x) & (x_1 < x < x_2) \\ \psi_{bp}(x) & (x_2 < x < x_3) \end{cases} \]

Fourier TR

Frequency domain \(\leftrightarrow \) Time domain
Model 2: Sound pressure

Comparison to measured data

Without cushion or anvil:

\[M_r = 6200 \, \text{kg}, \quad V_r = 7.6 \, \text{m/s} \]
\[x_1 = 5.4 \, \text{m}, \quad x_2 = 18 \, \text{m}, \quad x_3 = 62 \, \text{m} \]

Hydrophones from pile:

\[r = 12 \, \text{m} \]

Measure data (Reinhall2013)

Computation results

SPL\(_{\text{peak}} \) errors

2.0 dB
2.3 dB
2.3 dB
2.0 dB
1.6 dB
1.3 dB
2.4 dB
2.3 dB
Model 2: Sound pressure

Bottom truncation

Pressure at water-soil interface

Arriving time difference:

$$\Delta t = \frac{\sqrt{2(x_3 - x_2)^2 + r^2} - r}{c_b}$$
Outlines

- Motivation
- Model 1: force and penetration
- Model 2: sound pressure
- Parameters analysis
- Conclusions
Parameter analysis

Influence of the cushion and the anvil

Position:
\[r = 12 \, m \]
\[d = 8.4 \, m \]
Parameter analysis

SPL_{peak} & penetration

SPL_{peak} = 20 \log_{10} \left(\frac{\max[abs(p)]}{p_0} \right) \quad p_0 = 1 \, \mu Pa

Position: \quad r = 12 \, m \quad d = 8.4 \, m
Parameter analysis

SEL VS Penetration

\[
\text{SEL} = 10 \log_{10}\left(\frac{1}{t_0} \int_{t_1}^{t_2} \frac{p^2}{p_0^2} \, dt \right) \quad p_0 = 1 \mu Pa \quad t_0 = 1 \text{ s}
\]

\[
\text{Position: } \quad r = 12 m \quad d = 8.4 m
\]

Reference case: Without cushion or anvil

![Graph showing SEL decrement for unit penetration vs. cushion stiffness]
Outlines

- Motivation
- Model 1: force and penetration
- Model 2: sound pressure
- Parameters analysis
- Conclusions
Conclusions

- A finite difference model and a semi-anatical vibro-acoustic coupling model are established and combined to investigate the influence of cushions and anvils on the pile driving noise.

- Overlook of the rebounds and re-impacts between the ram, anvil and pile could lead to incorrect prediction of the pile driving noise, especially when steel-on-steel impacts occur between the anvil and the pile.

- Cushions with proper stiffness can reduce the peak pressure of underwater noise remarkably by weakening high-frequency component of impact force.

- The increase of the cushion restitution coefficient results in a lower peak sound pressure but a larger soil penetration.

- The increase of the anvil mass doesn’t change the peak pressure significantly but does reduces the soil penetration.

- Within a certain range of cushion stiffness, using a softer cushion can reduce the SEL per unit penetration depth notably.
Thanks for attention

Any problem?